Langmuir monolayer characteristics of oleoylamine analogues—promising anti-obesity agents

Author 1:
First Name: Catalina
Last Name: CIOATES NEGUT
Organization: University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Materials Science and National Institute for Chemical–Pharmaceutical Research and Development ICCF
Country: Romania

Author 2:
First Name: Eleonora-Mihaela
Last Name: UNGUREANU
Organization: University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Materials Science
Country: Romania

Author 3:
First Name: Katarzyna
Last Name: MAKYLJA-JUZAK
Organization: Jagiellonian University, Department of General Chemistry, Faculty of Chemistry
Country: Poland

Abstract:
Oleoylamine analogues which are considered as promising anti-obesity agents [1] were employed for systematic physicochemical characterization of Langmuir monolayers i.e. monomolecular insoluble films form at the air/water interfaces. Our researches were carried out using the Langmuir film balance, by means of which we registered surface pressure–area (π–A) as well as electric surface potential–area (ΔV–A) isotherms for selected oleoylamine analogues. Furthermore, we have also examined the impact of different factors such as: speed of compression, number of molecules spread at the surface and subphase temperature, on the characteristics of studied isotherms. In order to illustrate the texture of explored monolayers the Brewster Angle Microscope (BAM) was used. The analysis of obtained results provided valuable information on the organization of studied oleoylamine analogues at the air/water interface that can be relevant to conduct further research on the potential use of these compounds as anti-obesity agents.

References